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A differential pursuit-and-evasion game is considered in which the players-velocity-controlled points in 

three-dimensional Euclidean space-move on a two-dimensional conical surface, i.e. at each instant of time 

the players may choose their velocity vectors in an arbitrary direction along the tangent of the cone (the 

magnitude of the velocity vectors is bounded by a constant). The pursuer has a strict velocity advantage. It 

is shown that self-similar variables reduce the original game with dynamic equations of fourth order to a 

two-dimensional game. The necessary conditions of optimality are applied to construct a complete solution 

of the positional pursuit-and-evasion game. It is shown that in the main part of the phase space the optimal 

motion of the players is along the connecting geodesics. In the other part of the space, each player moves 

along his own geodesic; the envelopes of these geodesics are singular equivocal trajectories. The equivocal 

surface is a basic element of synthesis, enabling a complete optimal phase portrait of the game to be 

constructed. A third kind of motion is obtained for certain parameter values. In the corresponding 

subregion of the phase space, the pursuit time is independent of the evader position; starting from any 

point, the players meet at the vertex of the cone. 

Sufficiency of the optimality conditions is not considered. The present paper uses the methods described 

in [l] and develops its results. 

1. STATEMENT OF THE PROBLEM 

SUPPOSE that the points (players) P and E move on a closed two-dimensional conical surface Kc in 
three-dimensional Euclidean space (Fig. 1). The velocity of the point P does not exceed 1 and the 
velocity of the point E does not exceed v, O<v< 1. The open set &@--a cone without the vertex 
O-will be denoted by K. Parametrizing the cone K, we represent the equations of motion of the 
points P and E on the two-dimensional surface in the form 

P : x’ = u, u E E, (x), E : y’ = u, v E E, (y) (1.1) 

Here X, y E R2 are the local coordinates of the points P and E; E, (x) = {u E R ‘: (G (x) u, u) s a2 } 
is the ellipse of tangent vectors at the point x E K, (Y 5 0; G(x) is the metric tensor of the manifold K. 
We assume that the metric G is induced on K by the Euclidean metric of the embedding 
three-dimensional space. The positive definite matrix G(x) defines the first quadratic form of the 
surface [2]; its elements can be computed by expressing the square of the differential of the 
Euclidean length of an arc on K in terms of the parameters X. 
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FIG. 2 

FIG. 1 FIG. 3. 

Denote by L = L (x, y) the distance between the points P, E E K, i.e. the length of the minimal 
geodesic y c K connecting P and E. The game starts at time t = 0 and ends at time t = T> 0, when 
we first have 

L (z (T), Y (T)) = 0 (1.2) 

Player P attempts to minimize the time T and E attempts to maximize it. For t = 0, we have I> 0. 
The game (1.1) and (1.2) will be considered in the class of rotational controls, assuming that the 

players have complete information about the game dynamics and the current position (x, y) E K x K 

[31. 
Since the cone K can be unfolded on the plane, the local coordinates may be chosen to be 

Euclidean, i.e. there exists a change of variables x, y-+x, y such that the equation of simple motion 
(1.1) take the form 

P:Ic’-u,IuI,<l,E:y’=u,IvI~v (1.3) 

where x = (x1, x2), y = (yl , y2) are the local coordinates of the points P and E (Fig. 2) and 
1 u (2 = ul* + u** is the Euclidean length of the velocity vector u. We also introduce the four- 
dimensional phase state vector of the game ZE Q4: zi = xi, zi+* = yj, i = 1, 2. This change of 
variable arises, for instance, when the cone is subjected to the following deformation: it is folded 
along any pair of opposite generators yl, y2 C K into a plane two-sided angle, which is also denoted 
by K. The length of the geodesic is preserved under this transformation (Fig. 2). We denote by (Y in 
Figs 2 and 3 the half-angle of the cone when fully unfolded on the plane, 0 < CY < 7~. For (Y = 0, Ku 
degenerates into a ray; for a = 7~, it is unfolded into the entire Euclidean plane. On the angle K, the 
geodesics are polygonal lines with equal angles of “incidence and reflection” relative to the sides of 
the angle K (Fig. 2). 
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We may thus identify the physical space of the game with the plane two-sided angle K,: the game ends if the 
points P and E are on the same side of the angle and their Euclidean coordinates are equal. 

The players, located on the sides yi and 79 of the angle K, may continue their motion both on the “direct” 
and on the “reverse” side of the angle. Strictly speaking, the components of the vectors x, y should be equipped 
with an additional two-digit index that identifies the side of the surface on which the points P and E are located. 
For simplicity, this index is omitted and some additional verbal explanation is added when needed. Note that 
different choices of the generators y1 and y2 for folding the cone into a plane angle corresponds to different 
partitions of the manifold K into charts [2]. 

The players may also be located at the vertex 0 of the cone K,,. There is no tangent plane to K. at the point 
0, and therefore the constraints on the velocities of the players are not described by inclusions of the form 
(1.1). A tangential cone exists at the point 0 (it is identical with K). Admissible velocities for P = O(E = 0) 
are vectors in the three-dimensional Euclidean space directed along the generators of the cone K and not 
exceeding 1 (v) in absolute value. A more detailed analysis of the singularity associated with the vertex 0 is not 
required, because, as we shall see, with optimal behaviour of the players the vertex may only act as the initial or 
the final point of the trajectories. In other words, the smooth manifold K may also be considered as the phase 
manifold of the game, with condition (1.2) replaced in case of capture at the point 0 by the limit relationship 
L+Oast-,T-0. 

The construction of positional controls and stopping conditions only requires a knowledge of the relative 
positions of the players. Therefore, using the variables r, R, cp, whose meaning is clear from Fig. 3, we can 
restate the game (l.l)-(1.3) in the following form in terms of three-dimensional equations of dynamics and the 
stopping condition 

R’ = ~1, r.’ = y, rp’ = v,/r - u,/R, ( u 1 < 1, 1 v 1 < Y 

R (T) = r(T), rp (T) = 0 (R (2’) = r (2’) = 0) (1.4) 

Here ui and vi are the projections of the velocities of the points P and E on the axes of moving rectangular 
coordinate systems; the equality in parentheses corresponds to the encounter of the players at the vertex 0, 
when the value of the angle q(T) is undefined. The variables r, R, cp: 0~ r, R< Q), / cp 1 G a are uniquely 
expressible in terms of the local coordinates X, y used in (1.3) 

2. SELF-SIMILAR VARIABLES. THE TWO-DIMENSIONAL GAME PROBLEM 

Consider the transformation of the cone K to itself, applying contraction by a factor A, X>O, 
along all its generators. The unfolded plane figure shown in Fig. 3 will be similarly contracted. The 
points P, E go to some points PA, EA , and the length of any trajectory traversed by the players as 
well as the time to traverse the trajectory (with initial velocities) are reduced by a factor A. 
Therefore, contraction by a factor A = l/R may reduce the analysis of the game with any initial 
position (I-, R, cp) to the analysis of a standard position (p, I, cp), where p = r/R. This transformation 
is allowed because the problem does not have a characteristic length; in the pursuit-and-evasion 
game in a plane with an obstacle [4], for instance, this contraction alters the size of the obstacle and 
self-similarity does not hold. 

Using this argument, we can show that the complete system of relationships that describe the 
game, including the Bellman equation, is invariant with respect with the one-parameter group of 
contraction transformations. A more direct approach is by formulating an equivalent game in terms 
of the variables p, cp: O<p<m, Iql G 0~. The variables p, cp in this region can be used to parametrize 
the cone K, identifying the pairs (p, 0) and (p, 2a). A point of the cone is defined by the angle cp on 
the unfolded figure, measured from some fixed generator, and by the distance p from the vertex 0. 
Thus, the mappings (x, y)+ (r, R, cp) define the mapping K X K+ K. Having described the game 
autonomously in terms of (p, cp), we thus obtain a situation in which the relative dynamics of two 
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points on K is described by the motion of one point on K. A similar dimension-reducing technique is 
widely used in cases when the physical space of the game is Euclidean, see e.g. [3]. 

We introduce a new time T related to the original time t by the differential relationships dt/dT = R. 
Differentiating the equality p = r/R with respect to 7 (this operation is denoted by a prime) and 
using (1.4), we obtain the equations of motion in the form 

p = Vl - P%l v' == uz/p - ll,, 1 u 1 < 1, / v 1 < 2: (2.1) 

Note that the mapping t-7 depends on the particular realization of the function R(t), OS td T, 
i.e. on the choice of the control u](t) [ see (1.4)]. We assume that the time 7 = 0 corresponds to 
t= 0. 

To represent the functional of the game, we require the dependence R = R(7) = R,(T), 720, 
which is obtained by integrating the relationship R’ = Rul that follows from (1.4) and determining 
the time 7. We have 

7’ 

7’ :- ;I’dt -i ROT = R.gl.,,, 
0 

Z(t) --z csp(i ~1.~ (p)+) R, = R(0) 
(2.2) 

Omitting the positive multiplier R. , we can represent the functional of the game in the variables 
p, cp, y in the form 

.T = f Z(7) d-c (2.3) 
0 

The functional (2.3) does not have the additivity property, which is responsible, for instance, for 
the applicability of the maximum principle in optimal control problems. The dynamic programming 
approach leads to the Bellman equation, which contains both the gradient of the Bellman function 
and the Bellman function itself. 

In the variables p, cp, T, the stopping conditions are somewhat more complicated. If, for instance, 
the players meet at the vertex of the cone R = 0, then from the dependence R(7) we see that the 
interval [0, T] is mapped in the infinite interval [0, 03) and the functional (2.3) remains finite (equal 
to T/R,,). Thus, capture may occur in a finite or infinite time T = 8 when the following conditions are 
satisfied: 

0-C OS; p (6) = 1, cp (0) = 0 
(2.4) 

The inequalities in the second case follow from the conditions r-0, R-0 as 7+ 00. The 
encounter of the players in this case may occur at any point in the space p, cp, including p = 00, 
because the mapping (r, R, cp)-+ (p, cp) has a singularity at the point 0 = (0, 0, cp) and its image (in 
the limiting sense) may be any point of the cone K. This is not a fundamental difficulty, first, 
because of the special role of the point 0 in the context of optimal synthesis and, second, because 
the variables (p, cp) will be used mainly to represent the results, which are constructed using the 
variables (1.3) and (1.4). 
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Note that the control parameters ui, vi in (1.3) and (1.4) are the projections of the velocities, u, v 
of the points P, E on different rectangular coordinate systems, although the same notation is used. 
Thus, the dynamics of the game is represented in (1.3), (1.4), and (2.1) in terms of three coordinate 

systems, which will be called Cartesian, relative, and self-similar variables, respectively. Regions 
and surfaces (curves) in the space p, cp will be denoted for simplicity by the same symbols as their 
sources under the mapping (x, y)-+ (p, cp). 

3. THE NECESSARY CONDITIONS OF OPTIMALITY 

Denote by V the value of the game (the Bellman unction), treating it as a function of the arguments z(x, ~ x2, 
~3, ~1, zfR4, or r, R, cp. If the function V is directionally differentiable, then the generalized necessary 
conditions of optimality are written in the form [l, 51 

minmaxV>--l>maxminV’, (ul<l, IuI<,<z’ (3.1) 
U 1) 0 U 

Here V’ is the total derivative with respect to time by Eqs (1.3) or (1.4), i.e. the directional derivative of the 
vector of the ~ght-hand sides. At points of differentiability of the unction V, (3.1) reduce to equalities, which 
define the Bellman equation in Cartesian and relative variables, respectiveIy. 

F (p) - - Jf/pl” + pg + v v/p32 + p4a = -1 (p = v, E R”) 

- l/YRr + Vv2/R2 + v 1/ V,” + V,‘,fiL = -1 
(3.2) 

Denote by Q = Q(p, cp) the optical optimal outcome function in problem (2.1), (2.3). By (2.2), we have the 
identity V(r, R, q) = RQ(r/R, cp). Differentiating, we obtain 

vr = Q,, V,, = Q - pQ,, Vv = "Q, (p = r/R) 

Using this equality in the second relationship in (3.2), we obtain the Bellman equation for problem (2.1) and 

(2.3) 

@ = -v’Q,” + (Q - pQ,j2 + v VrQp2 i- Qp2/p2 + 1 = 0 (3.3) 

Equation (3.3) containing the required function Q can also be obtained by appIying the dynamic 
programming approach directly to the game (2.1) and (2.3). 

The bounda~ conditions for the required functions in Eqs (3.2) and (3.3) are respectively 

v(z, z)=O, V(r, r, O)=O, Q(1, O]=O (3.4) 

These boundary conditions indicate that the pursuit time is zero if the points P and E coincide, i.e. if condition 
(1.2) holds. 

The BeHman equations (3.2), (3.3) are nonlinear first-order partial differential equations of the form 
F(z, V*(z)) = 0, .zE ZC RR. They generate a system of ordinary differenti~ equations of order 2n + 1 (the 
characteristic system) [6] 

z’ = Fp, p’ = -F, - pF,, v’ = (p, Fp, (p = V,) (3.5) 

which is used for the local construction of the required function V(z). The function F for equations of the form 
(3.2) does not depend explicitly on V, and therefore the last equation in (3.5) is separated from the 
Hamiltonian system Z* = E;p, p’ = -F,. 
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The optimal trajectories of the players in regions where the conditions of regularity are satisfied [twice 
smoothness of the functions V, F, uniqueness of the extrema (3.1)] are determined by the characteristic 
equations. In Cartesian variables, using the function Fin (3.2), we write the Hamiltonian equations in the form 

pi ‘Pi +2 

zi’ = F,. zs - 
Vp12’ 

%+2 I = FPi+2 - .l/p32 _t pa2 
=-(i =1,2), p’=F,rO (3.6) 

The components of the vector Fp in (3.6) determine the optimal controls u, v in (1.3) depending on the 
conjugate vector p; the extrema in (3.1) are attained on these controls. Substitutingp = V,(z) in the vector F,, , 
we obtain the optimal positional controls of the players u(z), V(Z). System (3.6) is of eighth order, the 
Hamiltonian equations in relative variables are of sixth order, and the complete system of characteristic 
equations in self-similar variables is of fifth order 

p’ =z (DE, cp’ = 4) 
Tl’ 

j’ = -a 
P 

- &Do, 11’ = --CD 
(P 

- qcD@ Q’ = @DE + q@ 
? 

Here 5 = QP, n = Q,; the function @ = @(p, cp, 5, v), Q) is defined in (3.3). 

(3.7) 

4. PRIMARY SOLUTION 

In some region Zr CK X K of the phase manifold of the game, the optimal behaviour of the 
players is pursuit and evasion with maximum velocities along the minimal geodesic connecting the 
points P and E (the game is conducted on a non-Euclidean plane). This assertion can be proved 
independently [l] and it also follows from our optimal synthesis in the entire space. The pursuit time 
in this motion (the value of the game) is 

s (z) f, (z)‘(l - 2.), 1, (z) : rnin [L’ (z), L- (z)l (4.1) 

Here L is the length of the minimal geodesic, L+, L- are the local length minima corresponding 
to two possible motions from point P to E (Fig. 2). In the Cartesian variables, Lf and L- are 

defined by the equalities 

L* ~~_ [ 1 z 12 + 1 y 12 - 2 co.5 cc (X& - X:zy2)F 

i: 2 sin a (boy, + r,y,)l% 
(4.2) 

which are obtained by solving the problem of the minimum-length two-link polygonal line 
connecting the points P and E with a break on the ray yl and y2. Thus, S(z) = V(z) for ZE Z1 

It is shown in [l] that the time (4.1) is guaranteed for player P starting from any position, i.e. 
V(z)sS(z),zEZ= KxK. 

The function (4.1) satisfies the boundary condition (3.4) [ see (1.2)] and Eq. (3.2) at the points 
ZE Z1 , where L+(z) # L-(z), i.e. the function S(z) is differentiable. The last property is ensured by 
the fact that the functions (4.2) satisfy the eikonal equation in the first and second pair of arguments 

[II 
Lx,2 + Lxz2 = 1, Ly,Z + L,,Z = 1. 

In self-similar variables, the primary solution of Eq. (3.3) has the form 

w(p, cp) = h(p, cp)‘(l - v), h(r!R, cp) = L (r/R, 1, cp) =.L (r, R, cp)i'R, h = 

= min [IL+, h-1, h* = 1/l + p” - 2p COS(rp - IX Jr a) 
(4.3) 

i.e. W = Q for (p, ‘p) E Z1 (the symbol Z1 is also used for the primary region in the variables p, cp). Here 
L(r, R, ‘p) is the length of the minimal geodesic as a function of the relative coordinates. 
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FIG. 4. FIG. 5. 

The optimal trajectories of the players on the two-sided angle in the primary region are polygonal lines. They 
are shown in Figs 4 and 5 in the polar coordinates p, cp. Because of symmetry, we only show half the phase space 
corresponding to 0 6 cp G a; the other half of the picture is a mirror image relative to the ray OB. The family of 
primary trajectories in the coordinates p, cp is defined by the equalities 

p2 = 
1 + VW - 2va cos p a(1 - u) sin p 

1+ a=-ziTGOSp ’ Q v = if v%P - CT (1 + v) eos p (4.4) 
O<p<nx, 020 

The parameter t.~ identifying a curve of the family (4.4) equals the angle between the trajectory (the geodesic 
PE) and the generator of the cone passing through the point of encounter. Each curve is parametrized by the 
variable o 3 0, the value u = 0 corresponds to capture: p = 1, cp = 0. 

Formulas (4.4) can be obtained by considering in the variables r, R, cp the rectilinear planar motion of the 
players P and E with maximum velocities along the connecting ray toward the point of encounter M, using the 
parameter CT = (T- r)/] M j, where ( OM j is the distance from the vertex of the cone to the point of encounter. 

Also note that the family (4.4) consists of the integral curves (reaching the point p = 1, cp = 0) of the system 
of thr first two equations in (3.7) with .$ = W, , q = W,, where W is defined in (4.3). 

The ray cp = (Y originating from some point B (Figs 4 and 5) is the scattering line, corresponding to location of 
the points P and E on opposite generators of the cone. The scattering curve is determined by the conditions 
hf = h-. The ray cp = 0 includes two trajectories that reach the terminal point p = 1; on the original cone, these 
trajectories correspond to the motion of the players along a common generator toward the vertex or away from 
it. 

The point B and the singular equivocal trajectory reaching this point are 
described in [ 11. 

constructed by the method 

5. SINGULAR EQUIVOCAL MOTION 

Denote by r1 the part of the scattering surface L+(z) = L-(z) which lies in the primary region 
Z1, i.e. is an element of optimal synthesis. It has been proved [l] that F1 is defined by the condition 

I’,: Lf (z) = L- (z), F (Rz (2)) > 0, 

R (2) = (L” (2) + L- (z))/(2 (1 - Y)) 
(5.1) 
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Inequality (5.1) follows from the left inequality in (3.1) substituting V’ = min[L+‘, L-‘l/(1 -u) 
[see (4.1)]. On the set (5.1), the left condition in (3.1) ( min-max-min) is satisfied as equality, which 
indicates that the player P has a pure positional strategy [3, 51 on I,. The right condition in (3.1) 
(max-min-max) is satisfied on the entire surface L+(z) = L- ( ) z as a strict inequality (player E does 
not have a pure positional control). 

The edge B of the surface (5.1) is defined by two equalities 

B: L+(z) = L-(z), F(R,(z)) = 0 (5.2) 

The second equality can also be written in the form [l] 

1 a+ + a- 1 - v ( b+ -f b- 1 = 2 (1 - Y) (a = L,, b = Lv) (5.2’) 

where a’(z) and b’(z) are the outer unit tangent vectors to the two geodesics of equal length Lf, 
L- joining the points P and E (Fig. 1). The equalities in parentheses are satisfied because of the 
eikonal equations mentioned previously. 

The set B (5.2) is two-dimensional in the four-dimensional z-space. In self-similar variables, B is 
zero-dimensional, i.e. it is a point with coordinates p = pB, cp = a. 

The equation for pB may be derived geometrically, using the representation (5.2). A simpler 
technique is to substitute into the function @ (3.3) half the sum of the primary solutions (4.3), 
similar to (5.1); then the equality @ = 0 defining the edge of the manifold (5.1) in the variables p, cp 
takes the form 

p 1 1 -+- h? - (33 1 -v”p2+h2-1I=2(1--)ph; 

11 -= 1/l i- p2 - 2p COS Ct (5.3) 

In the plane of the parameters a, v (Fig. 6), the root pB of Eq. (5.3) in the regions II,, II2 is 
defined respectively by the equalities 

PB = [Y (1 :tI cos CC)~ (1 -Y) 1/2v (1 lF:cos a)liIcos a +- (2v - 1)l (5.4) 

On the critical curve II* = {(a, v): v = 1 - sina, O<a<rr/2}, separating the regions II,, II2 both 
roots are equal pB = coscx. 

The existence of a unique root (5.4) of Eq. (5.3) indicates that to each point EE K at a distance 
r > 0 from the vertex (Fig. 3) there corresponds a unique point PE K on the opposite generator at a 
distance R = r/p, from the vertex and such that the pair P, E is contained in the set B C K x K. This 
correspondence defines a smooth mapping K -+ B ; in other words, in Cartesian variables, the set B 
is a smooth two-dimensional manifold diffeomorphic to the cone K. 

Further constructions rely on the assumption that the edge B of the surface I, is also the edge of 
another singular surface r2, . the equivocal surface consisting of two branches If, I- [l, 71, in 
accordance with the qualitative picture in Fig. 7. 

FIG. 6. FIG. 7 
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The equivocal surface is the switching (discontinuity) surface of the optimal controls of both players and it 
consists of singular optimal motions [7]. In these motions, on reaching the surface one of the players (the 
designated player for the given surface) does not switch and continues using the “old” control. In the case of 
simple motions, when the extrema in (3.1) for the points of smoothness of the function V(z) are attained on 
unique vectors, the optimal trajectories are necessarily tangent to the equivocal surface. Three necessary 
conditions of optimality are satisfied on the equivocal surface in inequality form: the Bellman equation, the 
tangency condition, and the continuity condition: 

F (p) = 0, (F, (p), p - 4 (z)> = 0, JJ - s (2) = 0 (5.5) 

Here 5, q = S, is the primary solution, V, p = V, are the value and its gradient in the secondary region 2,. 
The conditions (5.5) uniquely define the system of equations for singular trajectories on the equivocal 

surface. The construction procedure is described in [7]. In reverse time, which is useful for backward 
constructions, these equations together with the initial conditions have the form [4,7] 

z’ = _F,, P’ = -l&F,, F,) / (F,,q*, ~*)l (P - q*) (5.6) 

z (0) = z’, p (0) = R, (i"), z" E B 

Here S,, and FPP are the symmetric matrices of second partial derivatives of the functions defined in (4.1) and 
(3.2). The function R(z) is defined in (5.1). For the branches r’ we use the primary solutions S*(z) = L’(z)/ 
(1 -u) in (5.5) and (5.6). 

The initial values of the conjugate variable at the points of the manifold B, shown in (5.6), were obtained by 
solving the following system of four equations: 

F(p) =O, <Fn (p), q* (2)) + 1 = 0, (p - q*, ~J’I> = 0, j = 1, 2 (5.7) 

Here rj(z) E R4 are two linearly independent vectors tangent to the manifold B at the point ZE B. The last 
two equations in (4.6) were obtained by differentiating the left-hand side of the last equality in (5.5) with 
respect to the directions ‘j. The second equality in (5.7) is the tangency condition (5.5) transformed using the 
homogeneity property of the function (3.2): F = (F, ,p) + 1. The corresponding system (5.7) is considered for 
each branch I*. Besides the trivial solutions p = q’, both systems (5.7) for noncritical values CX, v have a 
common solutionp = (q+(z) + q-(z))/2 = R,(z), which is the solution used in (5.6). The first equation in (5.7) 
is satisfied by the value p = R, because of (5.2). When this value is substituted in the tangency condition [the 
second equality in (5.7)], it is transformed to the first equality. Finally, the last equalities in (5.7) are checked 
using the differential consequences (q+ - q- , rj) = 0 of the equality S+(Z) -S-(Z) = 0, ZE B. 

The fact that a common value p(z), ZE B, exists for both branches of the equivocal surface indicates that, 
first, the gradient of the value of the game is continuously continuable to the set r+ + B + r- in the secondary 
region and, second, the branches r+ and r- are tangent on the set B to one another and to the surface rr . 
Figure 7 accordingly shows the tangent surfaces. 

The vectorp = R,(Z) is continuous in the parameters ((Y, u) E Il. For the critical values (CX, V) E II. 
we have R,(z) = p*(l, 0, 0,O). The function Fp is nonsmooth at the pointp*, its gradient FP used in 
the second equation (5.7) does not exist. As a function of the parameters ((.u, u), the vector 
Fp (R=(Z)) is discontinuous on the curve II.. Its limiting values for (a, u)+ II. in the regions II, and 
112 are respectively given by 

Il,: Fr, = (1, 0 - v, 0), ll,: Fp = (1, 0, v, 0) (5.8) 

In general, the even components of the vector Fp(R,(z)) are zero, and the first component 1s 
positive in the entire region II; the third component changes its sign on Il.. 

Three equations of system (5.7) are satisfied by the valuep*, and the second equation holds in the 
following generalized sense: both vectors (5.8) are contained in the cone of supporting normals to 
the level surface F(p) = 0 at the point p* (the subdifferential) and are orthogonal to both vectors 
p*-q+. 

Moreover, in the critical case (OL, v) E II* the coefficient of p - q in the second equation in (5.6) is 
meaningless. A rigorous analysis of the Cauchy problem (5.6) requires investigating the asymptotic 
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behaviour of its solution, which is not done here. Below we assume that the parameters CY, u take 
noncritical values. 

To construct the surfaces I*, we need to draw the trajectories of the system (5.6) from all points 
of B; the z-components of the solutions form the surfaces required. 

Self-similarity (Section 2) shows that the collection of the trajectories (5.6) can be constructed by 
simple enumeration of one trajectory (any one). Indeed, Eqs (5.6) and the function R,(z) are 
invariant under a change of coordinates and time z = AZ’, t = At’, A > 0. Because of rotational 
symmetry, we can choose the local coordinates x, y so as to reduce any point of the set B to the form 

2” = I@, ZB = (1, 0, PB, 01, h> 0 (5.9) 

where pB is defined in (5.4). Thus, in (5.6) it suffices to integrate numerically one standard trajectory 
originating from the point (5.9), e.g. for A = 1. The standard trajectories for the regions II, and II2 
differ by the sign of the third component of the vector Fp in (5.6) at the initial instant of time. This 
means that on the initial section of the trajectory (in reverse time) the point E of the region II, (II,) 
moves toward the vertex (away from the vertex) of the cone. The player P always moves away from 
the vertex. The corresponding sections of the trajectory are shown in Fig. 2; the index of the region 
Iii is shown next to the curve. 

The equivocal curve in self-similar variables is shown in Figs 4 and 5. In reverse time, integration 
is from point B to Q. Point Q is reached in an infinite time; the primary trajectories cross the curve 
BQ at a nonzero angle. The last assertion is based on the following property of system (5.6): the 
Langrangian manifold 2 = ((2, p): p = q(z), ZE Z} contains an attracting submanifold of the 
system which is reached by the solution in infinite time. In other words, for large (reverse) times, the 
equivocal motion is close to primary motion. This property is established by analysing the 
variational equation for the vector w = p - q, which is obtained by expanding the right-hand sides of 
(5.6) in powers of W. 

The curve BQ is tangent to the ray OB at the point B, and p’<O (in reverse time) for all 
parameter values. The effect shown in Fig. 2 in Cartesian variables corresponds to a discontinuity of 
p’ on the critical curve with the following values of the limits: II1 : p' = -(pi+ v)<O IL*: 
p'= -(pB-v)<o. 

6. SECONDARY SOLUTION. COMPLETION OF OPTIMAL SYNTHESIS 

In direct time, the trajectories are tangent to the equivocal surface I’. To construct the 
trajectories, we need to draw the solutions of the regular system (3.6) in reverse time from the 
points of I. The initial values of the conjugate variables are the values of the vector p(z), ZE r, 
obtained by integrating the system of singular characteristics (5.5). The trajectories issued from I in 
reverse time fill some (secondary) region Z, . 

For the parameter region II i , the set Z2 is the curvilinear triangle OBQ (Fig. 4). The segment OB 
is the secondary trajectory tangent at the point B to both branches I+ and I- of the equivocal curve 
(one branch is shown; the other is in the symmetrical half of the figure). The secondary trajectories 
in different halves of the figure intersect at the points of the open segment OQ, which are reached at 
different times, i.e. OQ is a scattering line for (a, v) E II,. 

This and a number of other assertions of this section rely on the analysis of some global properties 
of the solutions of the Cauchy problem (5.6) in Cartesian and self-similar variables. 

Thus, in the region II, of the parameters ((.u, v), the entire phase space is partitioned into two 
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regions Z1, 2,) whose boundaries include three singular lines-two scattering lines and one 
equivocal line. 

For (a, V) E III2 , a third region Z3 is also formed: Z = Z1 + Zz + Z, (Fig. 5). In this region, the 
optimal result is determined only by the position of the player P and is equal to the time of his 
motion to the vertex 0, where capture occurs, assuming optimal behaviour of player E. 

To obtain a more detailed description of the synthesis for KI,, let us first consider a qualitative comparison of 
the optimal pursuit strategies in regions II, and II2 for the boundary values a = 0, r. For the region II,, the 
motion of the players is similar to pursuit in a plane (a = IT), when the point E evades P and the existence of the 
vertex is not an obstacle to this evasion, merely “deforming” the trajectories to a certain extent. 

Now let (Y = 0, i.e. the space K is a ray with the end point 0. If the vertex 0 and the player E are initially on 
different sides of the point P, the player P moves with maximum velocity toward E until it is captured. A 
similar optimal pursuit is realized when E and 0 are on the same side of P, but the distance ratio of the players 
from the vertex satisfies the condition r/R c Y. Then capture occurs not later than the arrival of the players at 
the point 0. If r/R < u, then obviously capture occurs at the vertex: the player P moves with maximum velocity 
to the vertex and player E, acting ambiguously, will reach the vertex at the required time T = R. Here the 
capture time is independent of r. 

Pursuit of the cone for (a, u) E II2 is similar to the situation on a ray. The region 23, which is defined by the 
‘same inequality p = rlR< V, corresponds to a position of the players such that the point P manages to “crowd” 
the player E toward the vertex, whose existence restricts the manoeuvrability of E. 

In the previous section, we have described the jumplike variation of the standard equivocal 
trajectory of the player E (the sign changes of the variable +‘) when the parameters cross from 
region II, to II*. Singular equivocal trajectories for the region II2 are such that the secondary 
trajectories issuing in reverse time from the branches P, r- do not intersect one another and are 
extended to an infinite time interval. The collection of secondary z-trajectories issuing from the 
solutions of system (5.6) given condition (5.9) tend for X+ 0 to some surface r3, which defines the 
region Z3. The surface r3 consists of all trajectories along which the points P and E, moving with 
maximum velocity toward the vertex, reach the vertex simultaneously. In self-similar variables, r3 is 
an arc of the circle p = II, 1 cp 1 ~a, whose points are reached in infinite time by the trajectories 
starting on the curve BQ. 

Inside the region Z3, the optimal result depends only on the position of the pursuer: 
V = V(zl , z2) = R, Vz, = 0. On r3, the function V(z) is nonsmooth (and r3 is thus a singular 
surface), but both conditions (3.1) are satisfied as equalities. This means that players P and E have 
pure positional controls on r3. 

Equivocal and secondary regular trajectories, in particular, those shown in Figs 4 and 5, were 
constructed by numerical integration. The convexity properties of the standard trajectories of the 
players ensuring single-valued filling of the secondary region by regular trajectories are also partially 
justified by the analysis of numerical results. 

Thus, the necessary optimality conditions (3.1)-(3.7), (5.5) and their consequences (5.1) and 
(5.6) have led to single-valued constructions in the entire game space. A complete proof of the 
optimality of the proposed synthesis requires further study, in particular, an investigation of the 
properties of the solutions of the Cauchy problem (5.6). 
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TWO PROBLEMS OF ENCOUNTER UNDER CONDITIONS OF 
UNCERTAINTY? 
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Two problems of the encounter of several controlled objects described by nonlinear differential inclusions, 

with controls in the right-hand side are considered. Necessary conditions of optimahty are obtained in the 

form of a maximum principle. Previously such problems have been considered for the one-dimensional case 

[l] and for the multidimensional linear case.* 

1. LET R” be the n-dimensional real Euclidean space with the norm l/x// = (x1* + . . . + x~*)“~, 
x=(x1, . . ,) x,)ER”. We denote by conv(R) the space of all nonempty compact and convex 
subsets in R”. The metric h (A, B) between the sets A, B in conv(R”) is defined by the formula 

h (A, B) = min {r > 0 I A C B 4 S, (0), B C A + S, (0)}, 

where S,(a) is the sphere in R” with the radius z>O centred at the point a E R”. 
Denote by cc(R”) the space of all nonempty compact subsets of the space conv(R”) with the 

metric 
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